- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Gudluru, Indhuja (1)
-
Shen, Chunyuan (1)
-
Wang, Ke (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vision Transformers (ViTs) have evolved in the field of computer vision by transitioning traditional Convolutional Neural Networks (CNNs) into attention-based architectures. This architecture processes input images as sequences of patches. ViTs achieve enhanced performance in many tasks such as image classification and object detection due to their ability to capture global dependencies within input data. While their software implementations are widely adopted, deploying ViTs on hardware introduces several challenges. These include fault tolerance in the presence of hardware failures, real-time reliability, and high computational requirements. Permanent faults that are in processing elements, interconnections, or memory subsystems lead to incorrect computations and degrading system performance. This paper proposes a fault-tolerant hardware implementation of ViTs to overcome these challenges. This hardware implementation integrates real-time fault detection and recovery mechanisms. The architecture includes four primary units: patch embedding, encoder, decoder, and Multi Layer Perceptron (MLP) which are supported by fault-tolerant components such as lightweight recompute units, a centralized Built-In Self-Test (BIST), and a learning-based decision-making system using machine learning model 'decision tree'. These units are interconnected through a centralized global buffer for efficient data transfer, ensuring seamless operation even under fault conditions.more » « lessFree, publicly-accessible full text available June 25, 2026
An official website of the United States government
